Maribia’s Blog

Just another WordPress.com weblog

Le traitement de l’eau par rayonnement UV

Le dispositif de traitement, bactéricide, a pour principe de générer des rayons ultra-violets au sein d’une chambre d’irradiation. Ces rayons que l’on explicitera plus loin, irradient les cellules vivantes contenues dans le liquide traversant l’appareil.
Le principe de base, connu depuis le début du siècle, bénéficie aujourd’hui de matériaux nouveaux (lampes à haut pouvoir germicide, et chambre d’irradiation à haut coefficient de réflexion), et d’une maîtrise totale des paramètres annexes de fonctionnement (environnement, débit, application). La qualité de l’eau étant depuis quelques années pointée du doigt, le principe de décontamination par UV s’est alors beaucoup développé.
Principe de fonctionnement
Les rayons ultra-violets sont une onde électromagnétique et regroupent des fréquences oscillants entre 10 et 400 nm (10 nm étant la limite des rayons X et 400 nm la limite des radiations visibles).
Ces radiations UV ont une action photochimique sur les corps, action qui se manifeste par des réactions très diverses telles que :
• pigmentation de la peau (pour des longueurs d’onde UV-A comprises entre 315 et 400 nm),
• vitamination des produits alimentaires (pour des longueurs d’onde UV-B comprises entre 285 et 315 nm),
• destruction des micro-organismes (pour des longueurs d’onde UV-C comprises entre 200 et 280 nm),
• formation d’ozone (pour des longueurs d’onde de l’ordre de 185 nm).
L’action stérilisante, est due à la perturbation apportée par les radiations ultra-violettes dans la structure chimique des constituants de la cellule vivante, et par suite, de leur fonctionnement. La courbe d’adsorption de l’ADN (acide désoxyribonucléique), véritable support de l’information génétique dans le noyau des cellules, pour des longueurs d’onde comprises entre 200 et 285 nm met en évidence un pic à la longueur d’onde de 257 nm, c’est à dire un profond effet germicide à cette longueur d’onde.
Suivant la quantité d’énergie UV reçue, la cellule vivante sera soit stérilisée (effet bactériostatique) soit détruite (effet bactéricide). L’effet bactériostatique dans le cas d’une absorption modérée d’énergie UV, permet à la cellule de continuer à vivre, mais sans avoir la possibilité de se reproduire. Cette cellule est donc condamnée à disparaître. L’effet bactéricide, dans le cas d’une absorption d’énergie supérieure à une certaine dose, permet la destruction de la cellule. La dose minimale légale selon la circulaire du 19/01/87 de la Direction Générale de la Santé est de 25 000 micro watt seconde par centimètre carré.
La loi de Lambert-Beer donne le calcul de l’énergie et met en évidence un certain nombre de paramètres dont dépend cette énergie :
• la puissance de la lampe, source UV, P en Watts,
• la surface émettrice S en m²,
• le coefficient d’adsorption des rayons UV dans le liquide à traiter K en 1/m,
• l’épaisseur de la lame d’eau Y en m,
• le temps d’exposition d’un élément de volume T en s.
d’où : D (dose d’exposition) = P / S × exp(-KY)×T exprimée en J/m² ou en 10 micro Ws/cm²
L’action abiotique des radiations UV sera d’autant plus efficace que la structure de l’être vivant se rapprochera de la structure mono-cellulaire. Les microbes, virus , bactéries, seront donc particulièrement sensibles aux rayons UV puis pour des doses plus fortes les végétaux inférieurs tels que les algues, les moisissures et leur spores.
Technologie, caractéristiques
Les rayons UV sont produits par des lampes à vapeur de mercure qui émettent à la longueur d’onde de 254 nm, très proche de la longueur d’onde de 257 nm à haut pouvoir germicide.
Deux types de lampes existent : lampes basse pression et haute pression.
Ces dernières émettent des puissances UV-C plus élevées, environ 100 à 150 W UV-C mais avec des rendements énergétiques inférieurs. Les durées de vie de ces lampes sont d’environ 3000 heures pour les lampes de type HP et de 8000 heures pour les lampes de type BP.
Un appareil de traitement UV se compose d’une ou plusieurs lampes placées dans des gaines de quartz pour être isolées thermiquement de l’eau. Ces lampes peuvent être assemblées dans un tube cylindrique (appareil de type fermé) ou dans un canal (appareil de type ouvert). Dans les deux cas l’eau circule, au voisinage des lampes, en couches minces car les rayons UV sont rapidement absorbés par l’eau. Les gaines de quartz se trouvent confinées dans un réacteur qui, suivant la pression de fonctionnement est construit en acier inoxydable, acier zingué à chaud ou polyéthylène à haute densité.
L’ensemble est commandé par une armoire électrique assurant l’allumage des lampes, leur fonctionnement, le comptage des heures de fonctionnement et d’une alarme indiquant un éventuel dysfonctionnement.
L’énergie consommée par la désinfection varie en fonction de l’adsorption du rayonnement par l’eau à traiter (turbidité, présence de métaux, matières organiques…) Cette énergie se situe généralement entre 15 et 40 Wh par mètre cube d’eau traitée.
L’efficacité obtenue varie entre 90 et 99,99 % suivant la durée d’exposition de l’eau à traiter au rayonnement.
La capacité de traitement des appareils est très vaste, depuis quelques litres par heures pour un dispositif mono-lampe, jusqu’à 1 000 mètres cubes pour les plus grosses installations industrielles. L’investissement à réaliser suit la même évolution, depuis 2 000 F environ pour un appareil traitant 48 litres/heure jusqu’à 200 000 F pour un dispositif traitant 500 mètres cubes/heure.
Avantages et inconvénients
Le système de décontamination de l’eau par UV possède de nombreux avantages. Le plus intéressant est que la désinfection s’accompagne de la formation d’aucun produit de réaction avec les matières organiques de l’eau. L’utilisation de l’appareil est simple, il est adaptable sur un circuit de distribution d’eau déjà en place, son entretien réduit et son coût de fonctionnement est relativement bas.
Ces avantages sont contrecarrés par quelques inconvénients majeurs. Il n’y a pas de possibilité d’apprécier de façon immédiate l’efficacité du traitement par la mesure d’un résiduel comme dans le cas d’un oxydant chimique. Il n’y a pas d’effet rémanent. L’emploi de la désinfection par UV est donc réservé à la désinfection d’eaux dont le circuit de distribution est court et bien entretenu. Enfin, le bon fonctionnement de l’appareil nécessite une eau de bonne transmittance, c’est à dire une turbidité inférieure à 1 NTU.
Domaines d’application
Nous avons beaucoup parlé d’eau car c’est surtout pour le traitement des eaux que les UV sont utilisés. Toutefois, certaines applications spéciales concernent la décontamination de l’air dans les industries d’emballage en particulier.
Sinon, en ce qui concerne le traitement de l’eau, le domaine d’application de la méthode est très vaste :
• Traitement de l’eau potable. Alimentation en eau potable publique et particulière, hôtels, restaurants, hôpitaux, écoles, centrales électriques, systèmes militaires, centres sportifs…
• Agriculture et aquaculture. Eau potable et d’usage général pour fermes, laiteries, bétail, vollailles et pisciculture, mollusques et crustacés…
• Lignes maritimes et chemin de fer. Eau potable sur les parcours maritimes internationaux et intérieurs, plate-formes de forage, voitures restaurant…
• Industries alimentaires et de boissons. Eau de table, eaux de process (dillutions, rinçages), sucre liquide…
• Electronique. Eau de process pour les circuits intégrés et imprimés, eau de lavage recyclée…
• Industries chimiques, pharmaceutiques, cosmétiques. Eau de production de pureté élevée, protection contre les micro-organismes se développant dans les réservoirs, eau de circulation…
• Photochimie, climatisation…

Publicités

avril 28, 2009 Posted by | Uncategorized | Laisser un commentaire